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In this paper, the issue of nonlinear sensitivity analysis for dimensionality reduction in hydrologic
model calibration is discussed, and a novel method to quantify the sensitivity of each parameter that
considers the nonlinear relationship in the model is presented. The method is based on computing the
absolute variation of the nonlinear function represented by the model in its parameter space. The
paper discusses the theoretical background of the method and presents the algorithm. The algorithm

employs neural network as a pseudo simulator to reduce the computational burden of the analysis.
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The proposed approach of sensitivity analysis is illustrated through a case study on a physically based
distributed hydrologic model. The results indicate that the method is able to rank the parameters
effectively, and the ranking can be interpreted in the context of the physical processes being
considered by the model.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

All physics based distributed complex hydrologic models are
generally characterized by a multitude of parameters. Due to
spatial variability in the processes, the value of many of these
parameters will not be known exactly. Further, many of them
may not be directly measurable too. Therefore in most cases
model calibration is necessary. During a model calibration,
selected parameters are allowed to vary within predefined
bounds, until an optimal correspondence between the model
outputs and actual measurements are obtained. However, when
the number of parameters in a model is large, the calibration
process becomes complex and computationally extensive (Cibin
et al., 2010; Sorooshian and Gupta, 1995; Rosso, 1994). In such
cases, sensitivity analysis (SA) is helpful to identify and rank
parameters that have significant impact on specific model
outputs of interest (Saltelli et al, 2008). Generally, SA is
employed prior to the calibration process in order to identify
a candidate set of important factors for calibration so that
complexity of calibration process can be reduced. This may allow
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dimensionality reduction of the parameter space where the
calibration is made.

1.1. Background on sensitivity and uncertainty analysis

Sensitivity and uncertainty analysis of model parameters is
usually considered to be one of the primary steps in the develop-
ment and evaluation of models used for natural resources
management (Jakeman et al, 2006). Consequently, parameter
sensitivity and uncertainty in catchment modeling has received
considerable attention over a long period of time (Beck, 1987;
Jakeman and Hornberger, 1993; Gallagher and Dohert, 2007). The
sensitivity analysis has become an important tool to explore the
high dimensional spaces, assess parameter identifiability and
understand the sources of uncertainty (Hornberger and Spear,
1981; Freer et al.,, 1996; Saltelli et al., 1999; Wagener et al., 2001,
2003; Hall et al., 2005; Muleta and Nicklow, 2005; Pappenberger
et al., 2006, 2008; Demaria et al.,, 2007; Tang et al., 2007a,b).
Norton (2008) proposed algebraic sensitivity analysis of models,
equation by equation, and discussed its advantages and limitations.
They demonstrated that their method can save much computa-
tional experiment. The sensitivity and uncertainty analysis help in
understanding the models’ parameters and also help in under-
standing the way the uncertainties of different orders are propa-
gated to the output variables.
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A lot of approaches for quantifying uncertainty have been
proposed, which include the Generalized Likelihood Uncertainty
Estimator (GLUE) (Beven and Binley, 1992), frequentist approaches
(Montanari and Brath, 2004), standard Bayesian approaches (Feyen
et al.,, 2007; Kuczera and Parent, 1998; Kavetski et al., 2006a,b),
Bayesian hierarchical models (Kuczera et al., 2006), Bayesian model
averaging (Duan et al., 2007; Marshall et al., 2007), and bootstrap
approach (Selle and Hannah, 2010). Beven et al. (2008) suggest that
since the real information content of the data used in modeling is
not clearly known a priori, it is difficult to make a reasonable choice
between methods of uncertainty estimation for real applications. It
may be noted that unless carefully performed, the model calibra-
tion and modeling efficiency analysis may induce the modeller
excessively confident in the model results when data are scarce
(Freni et al., 2009a,b).

1.2. Current methods of SA: a critique

A number of different techniques exist for sensitivity analysis,
which can be broadly grouped into two: local approaches and
global approaches (Salteli et al., 2008; Muleta and Nicklow, 2005).
Local techniques aim at identifying the output responses by
sequentially varying each of the input factors and by fixing all other
factors to constant nominal (near optimal) values (Turanayi and
Rabitz, 2000; Spruill et al., 2000; Holvoet et al., 2005; Hill and
Tiedeman, 2007). The farther the perturbation moves away from
the nominal value, the less reliable the analysis results become
(Helton, 1993). Also, when the relationship between the input and
output are nonlinear (which is typically the case in most hydrologic
models), it is difficult and unreliable to employ local techniques. In
addition, individual perturbation of the parameters can provide
only the independent impact of parameter to the model output the
interactive effects of parameters cannot be derived. However, if the
parameters are correlated (which is also the case in most hydro-
logical models) this assumption is not appropriate as far as the
system represented by the model is concerned, as a change in one
input feature may be accompanied by a change in another covariant
feature.

Global SA (GSA) methods, in contrast, explore the entire
range of parameters and all the parameters are simultaneously
perturbed, allowing investigation of output variation as a result
of all parameters and their possible nonlinear interaction. While
there are a variety of GSA techniques available, variance
decomposition based methods are the widely employed tech-
niques, in which the output variance between simulations is
decomposed into variance contribution from individual param-
eter component. Fourier amplitude sensitivity test (FAST) (Cukier
et al., 1973) and Sobol’s methods (Sobol’, 1993) are the most
popular and widely investigated (Homma and Saltelli, 1996;
Francos et al,, 2003; Cariboni et al., 2007; Ratto et al., 2001)
variance based methods. The main features of both these tech-
niques are: model independence, capacity to capture full range
of wvariation of each variable, identification of interaction
between parameters, and SA can be performed on subgroups of
input variables (Lilburne et al. 2006). It has been reported that
the classical FAST method is not efficient in addressing higher
order interaction terms (Saltelli and Bolado, 1998). On the other
hand, Sobol’s method can estimate the interactions between the
parameters and total sensitivity index of individual parameters
(Sobol’ 1993; 2001). Nonetheless, their application is difficult in
cases where the model contains a large number of parameters
or/and it is computationally too expensive (Cariboni et al., 2007),
such as distributed hydrological models (especially physically
based).

1.3. Scope for research

Generally in any SA method a ‘sufficient’ number of parameter
combinations are sampled using any preferred sampling technique,
and the model is executed on these parameter samples. It is fol-
lowed by further analyses to provide a qualitative or quantitative
measure of output uncertainty induced by each parameter. The
major limitation of the existing methods is that local methods
consider the strength of linear relationship between the parame-
ters and the measure of sensitivity (Fogila et al., 2007, 2009), and
GSA methods require large computational time (Cibin et al., 2010).
While local methods are useful when models are computationally
demanding (Fogila et al., 2007, 2009), they do not work well for
parameters characterized by discrete instead of continuous values.
Hence a method for computing the strength of nonlinear rela-
tionship between the parameters and the model output with less
computational time is needed to identify parameters that have
most influence on predictive uncertainly over the entire range of
parameter space, and not just the small range considered in the
linear sensitivity analysis.

This paper presents the concepts and the procedures of a novel
multi-parameter nonlinear sensitivity analysis that can be used for
parameter dimensionality reduction during calibration of complex
hydrologic models. The method employs the concept of pseudo
simulator to reduce the computational burden in the analysis. The
method is illustrated through case study on a physically based
distributed hydrologic model. The proposed method results in
ranking of the parameter, and brings out the interactions between
them with reference to the hydrologic processes considered.

2. Theoretical background

Any hydrologic model can be described by the functional
relationship:

y =fx2) (1)

in which the y is the response variable of the model, x represent the
input variable(s) and 1 is the parameter vector. Consider this rela-
tionship to be evaluated at a set of points S (Monte Carlo simula-
tions of parameter set, A) lying inside a domain D (parameter
range). If the magnitudes of the partial derivatives of the function
with respect to the parameters are a measure of significance, it is
implicitly assumed that the variables can change freely and inde-
pendently from one another. This assumption is valid only if the
influencing factors can be varied individually but if they are
correlated, this assumption is not appropriate.

The inter relationships between the various parameters of the
model and the output could be taken into account by focusing on
the variations of f that actually occur inside the domain D (Schmitz
et al,, 1999). This is done by measuring the variation of f when
moving between the points in S. This variation v(f) of the function f
(x,A) between the points i and j is defined as the absolute value of
the directional derivative of f(x,A) integrated along a straight line
between the two points 4; and ;. Thus

A
wi(f) = / IAF(x, 2)-uld) )

where u is unit vector in direction 4; and A;. This variation can be
computed between all pairs of points in S. When an attribute is
insignificant to the function for the domain D, the variation in the
function will be unrelated to the variation in the attribute. Thus
a measure of the significance of an attribute (parameter) for
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a function f over a data set S would be the correlation between the
absolute variation of the function and the absolute variation of that
attribute taken between all possible pairs of points in S. Hence, by
computing the absolute variation for all the parameters of the
model, the parameters can be ranked in terms of their sensitivity.
Further, it is expected that the forcing data (x) do not vary from one
simulation to the other during the analysis, suggesting that the
parameter vector (1) is the only variable, which is responsible for
the variation in the performance of the model.

However, a practical application of this analysis is very complex
because the function has to be evaluated (simulation of the models)
at each and every discrete point, and hence involves a number of
model runs resulting in long computational time and effort. It is
proposed to address this issue by replacing the original model with
a suitable pseudo simulator, which can understand the behaviour of
the actual model and perform simulations as done by the model, to
evaluate the objective of the SA. The pseudo simulator, being
a simple mathematical equation, can considerably reduce the time
required for evaluating the objective function of the optimizer. The
characteristics of the pseudo model should be that it takes lesser
time to compute the sensitivity index of the SA without increasing
uncertainty in the model outputs.

Artificial neural network (ANN) can be a viable choice for such
a pseudo simulator (Rao et al., 2004). An ANN attempts to mimic, in
a very simplified way, the human mental and neural structure and
functions (Hsieh, 1993). It can be characterized as massively parallel
interconnections of simple neurons that function as a collective
system (ASCE, 2000). The network topology consists of a set of
nodes (neurons) connected by links and usually organized in
a number of layers. Each node in a layer receives and processes
weighted input from the previous layer and transmits its output to
nodes in the following layer through links. Each link is assigned
a weight, which is a numerical estimate of the connection strength.
The weighted summation of inputs to a node is converted to an
output according to a transfer function. Most ANNs have three
layers or more: an input layer, which is used to present data to the
network; an output layer, which is used to produce an appropriate
response to the given input; and one or more intermediate layers,
which are used to act as a collection of feature detectors. The goal of
the ANN here is to establish a relation of the form:

(Y™) = F(x") (3)

where, X" is an n dimensional input vector consisting of Xy, x, ...Xp;
and Y™ is an m dimensional output or target vector consisting of
resulting variables of interest yy, ¥, ..vn; and f{.) is the transfer
function.

The network is trained generally, using a back propagation
algorithm that will adjust the weights and biases so as to minimize
the error function given by:

E=>" > i—t)? (4)
P D

where, y; is the ANN output, and t; is the desired output, p is the
number of output nodes, and P is the number of training patterns or
data sets. ANNs are reported to be capable of modeling the
hydrological processes (or any other nonlinear processes) due to
their ability to generalize patterns in noisy and ambiguous input
data and to synthesize a complex model without prior knowledge
or probability distributions (Maier et al., 2010).

The use of pseudo simulator is based on the assumption that
once an ANN model is trained and tested for generalization prop-
erties, the trained model represents the functional relationship of
the system. When the neural network constitutes a generalized
representation of a given set of data, a new artificial data set with

approximately the same distribution as the original data can
subsequently be generated. Randomly sampling the parameter
space, and computing the target values for these sampled points by
means of the trained neural network accomplish this. In order to
ensure that the newly generated data is representative of the
original training data set, it is essential that sampling be only
allowed in the neighborhood of points or clusters present in the
training data set. This can be achieved by using a nearest neighbor
method; discrete samples of parameters are made along the
Euclidean distance between two nearest points in the training data
set.

3. Methodology

The algorithm for the proposed method of sensitivity analysis is
as follows:

. Select the model and identify the parameters to be tested
. Set the range of each parameter to include expected variations
that may occur for the watershed under consideration

3. Generate a series of parameter combinations within the design
range.

4, Execute the model using the selected parameter sets and
calculate a measure of sensitivity

5. Develop the pseudo simulator using the sampled parameter
sets as input and the corresponding measure of sensitivity as
target

6. Evaluate the absolute variation of the function using Eq. (2)
between any given two points in the parameter space (4; and
).

7. Cjompute the correlation between the absolute variation of the
function and the absolute variation of each parameter.

8. Rank the parameters according to the magnitude of correlation

computed at step 7.

N —

At step 6, it is required to evaluate the function for a selected
number of discrete points between the two points (4; and 4;); per-
forming numerical integration along the path of 4; to 4; accomplish
this. Since the function evaluations are required at every discrete
points between 4; and 4;, model runs are required at these points.
However, a pseudo simulator eliminates the actual model runs
since it directly produces the measure of sensitivity at these
discrete points. One of the model performance measures, the root
mean square error (RMSE), is a function of model output and the
measured values; any variation of output due to parameter change
would cause a change in RMSE. Consequently, RMSE is proposed to
be used as an index of sensitivity in cases where measured values of
the output are available. The purpose of the sensitivity analysis
herein is to identify and rank the parameters according to their
sensitivity; therefore the direction of sensitiveness (positive or
negative correlation) is not considered in this approach. However,
one can easily modify this algorithm for taking the direction of
sensitivity in to account by evaluating a non-absolute measure of
the variation.

4. Illustrative case example
4.1. The model description

The soil and water assessment tool (SWAT) is used to demon-
strate the nonlinear sensitivity analysis proposed herein. SWAT is
awatershed scale operational or conceptual model that operates on
a daily time step. The SWAT model divides a watershed into smaller
sub-watersheds, based on topographic information. The sub basins
are further divided into smaller spatial modeling units known as
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Table 1

The parameters of the SWAT model that influence stream flow simulation in the model and their recommended range of perturbation.

Parameter Description Unit Min Max Influencing hydrologic process
CN_f* Curve Number % -25 15 Surface runoff

SOL_AWC? Soil Available Water Capacity % -0.3 2 Soil moisture

REVAPMN Threshold depth of water in the shallow aquifer for ‘revap’ to occur mm 0 30 Soil evaporation, ground water loss
ALPHA_BF Baseflow Recession coefficient % 0 1 Baseflow

ESCO Soil Evaporation Compensation Coefficient = 0.01 1.00 Evapotranspiration

SMFMX Maximum melt rate for snow oc 0 10 Snow melt during the year
GW_REVAP Ground water revap Coefficient - 0.02 0.20 Groundwater loss

SMFMN Minimum melt rate for snow oc 0 10 Snow melt during the year

2 These parameters were changed as a percentage of their default values to maintain heterogeneity.

Hydrologic Response Units (HRU), depending on the heterogeneity
of land uses and soil types within the watershed. An HRU is
a fundamental spatial unit upon which SWAT simulates the water
balance. Briefly, the hydrological processes modeled in SWAT are
precipitation, surface runoff, soil and root zone infiltration,
evapotranspiration, soil and snow evaporation and baseflow
(Arnold et al., 1998). SWAT models the complete nutrient cycle for
nitrogen and phosphorus as well as the fate and transport of any
pesticides applied in an HRU. Being a physically based distributed
parameter model, SWAT considers both upland and stream
processes that occur in a watershed. The upland processes include
hydrology, erosion, climate, soil temperature, plant growth, nutri-
ents, pesticides, and land management. Stream processes consid-
ered by the model include water balance, routing, and sediment,
nutrient and pesticide dynamics. Among others, Gassman et al.
(2007), Arnold and Fohrer (2005), Jayakrishnan et al. (2005), and
White and Chaubey (2005) have provided detailed overview of
model application in making watershed response predictions.

The SWAT model is one of the most popular hydrologic models
(Arnold et al., 1998; Arnold and Fohrer, 2005; Confesor and
Whittaker, 2007; Zhang et al., 2008). The model has gained inter-
national recognition as is evidenced by a large number of applica-
tions of this model (Gassman et al., 2007; Anand et al., 2007). The
SWAT model is also characterized by a large number of parameters,
and despite a plethora of applications using SWAT, a comprehen-
sive evaluation of its parameter sensitivity is still lacking (Cibin
et al., 2010). Some limited studies about parameter sensitivity of
SWAT have been reported (Arnold et al., 2000; Spruill et al., 2000;
Lenhart et al., 2002; Francos et al., 2003; Osidele and Beck, 2001;
White and Chaubey, 2005; Holvoet et al., 2005; van Griensven
et al,, 2006; Arabi et al,, 2007; Muleta et al., 2007; Stow et al,,
2007); most of them used local sensitivity methods.

The computations in the SWAT model is based on the premise
that the simulation of the hydrology of a watershed can be sepa-
rated into two major divisions. The first division is the land phase of
the hydrologic cycle. The land phase of the hydrologic cycle controls
the amount of water, sediment, nutrient and pesticide loadings to
the main channel in each sub basin. The second division is the
water or routing phase of the hydrologic cycle, which can be
defined as the movement of water, sediments, etc. through the
channel network of the watershed to the outlet. The land phase of
the hydrologic cycle is modeled in the SWAT based on the water
balance equation:

t
SWr = SWO + Z (Rday,i - qurf,i - Eaj - Wseep,i - ng,i) (5)
i=1

where SW; is the final soil water content (mm), SWy is the initial soil
water content (mm), t is the time (days), Raqy, is the amount of
precipitation on day i (mm), Qsyy; is the amount of surface runoff on
day i (mm), Eg; is the amount of evapotranspiration on day i (mm),
Wseep,i is the amount of percolation and bypass flow exiting the soil

profile bottom on day i (mm), and Qgyw,; is the amount of return flow
on day i (mm). Each component of the water balance equation (Eq.
(5)) is modeled using very well established relationships in
hydrology thus making the SWAT a very complex, distributed
hydrological model. In this study, the stream flow modeling of
SWAT is taken into consideration for sensitivity analysis.

The parameters of the SWAT model that affect the stream flow
computations are identified through a detailed literature review and
are presented in Table 1, along with their recommended range of
perturbations (Neitsch et al., 2002; Arabi et al., 2007). The parameter
ranges used in the SA are generally advised for SWAT applications and
were not derived for specific conditions of the watershed (Neitsch
et al, 2002). The parameter ESCO, soil evaporation compensation
factor, is related to evaporation process. ESCO controls the soil evap-
orative demand that is to be met from different depths of the soil. It
works in such a way that the smaller the value of ESCO, the more the
extraction of the evaporative demand from lower levels that the
model allows. The parameter CN_f represents the Curve Number in
calculating the surface runoff from the basin using SCS—Curve
Number method. The parameters such as ALPHA_BF and GW_REVAP
are ground water simulation parameters of SWAT. ALPHA_BF, the base
flow recession coefficient, is a direct index of ground water flow
response to changes in recharge. GW_REVAP, ground water revap
coefficient, controls the reverse water movement from shallow
aquifer to the unsaturated soil layers. The soil moisture characteristics
are represented in the model by soil available water capacity, SOL_-
AWC, which is estimated as the difference between the field capacity
and the wilting point moisture contents. The parameters SMFMX and
SMFMN are related to the snow melt processes represented in the
model and are the melting factors. It may be noted that there are
a large number of parameters in SWAT model, the current study
considered only those presented in Table 1.

Initial values for these parameters were assigned using the soil
characteristics, land use pattern and the topography of the water-
shed. Following Muleta and Nicklow (2005), during the Monte
Carlo simulation of SWAT, some of these parameters (see Table 1)
have been forced to assume uniform values within the watershed,
and other parameters were allowed to vary uniformly by a percent
change from their initial values in order to maintain their variability
in different HRUs. Note that the sampling of the parameters was
performed in their complete recommended range.

5. Description of study area and data

The SWAT model has been applied to Illinois River basin in
Arkansas, USA, which is one of the major watersheds of the Northwest
Arkansas. Illinois River, flowing west across the Arkansas—Oklahoma
border into Oklahoma, crosses the state line just south of Siloam
Springs at the Arkansas Highway 59 Bridge. This watershed is used in
this study for the demonstration of the proposed method for SA. The
outlet of the watershed is the USGS gauging site 07195430 on Illinois
River, South of Siloam Springs, Arkansas. The geo-reference for the
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Fig. 1. Location of the Illinois River Watershed—Arkansas, USA and the USGS gauging stations within the watershed.

gauging site is 36°06'33.32“ Latitude and 94°32'04.3” Longitude
(NADB83). The drainage area of the watershed up to this gauging site is
1490 km?. The watershed boundary, delineated using SWAT model
(with ArcView interface), is shown in Fig. 1 for reference.

The elevation of the IRDA watershed varies from 279.6 m to
600.0 m with a mean elevation of about 380.5 m. The digital elevation
map obtained from United States Geological Survey (USGS) at 30-m
resolution is used to provide the GIS file of elevation in the SWAT
model. The land use information of the Illinois watershed has been
obtained from the °‘Arkansas Land-use/Land-cover, 1999’ data
prepared by Center for Advanced Spatial Technologies (CAST),
University of Arkansas. Major land use categories of the watershed are
pasture under tall fescue and Bermuda followed by forests and resi-
dential areas. United States Department of Agriculture (USDA),
Natural Resources Conservation Service (NRCS) database, Soil Survey
Geographic (SSURGO), for Benton County and Washington County,
Arkansas are used for extracting soil information in the watershed.
Major soil types in the watershed are Nixa, Captina, Clarksville, and
Enders covering an area of more than 5%. There are several minor soil
types having a share of less than 5% in the watershed. Weather data
from stations within the region, Fayetteville Experiment Station, and
Bentonville, are incorporated to provide the most representative
precipitation and temperature data available. Other meteorological
data required by SWAT (solar radiation, wind speed, and relative
humidity) are estimated using the SWAT weather generator.

The SWAT model is setup for the Illinois River watershed for 7
years, 1996—2002, out of which first three years were considered as
warm up period. Thus, effectively 4 years’ data were considered for
the analysis. The measured daily stream flow values from USGS
gauging station 07195430 of Illinois River south of Siloam Springs
(Fig. 1) were used for the analysis. Illinois basin experiences an

average annual rainfall of 90.5 cm. The daily flow ranged from
a minimum of 2.4 m>/s to a maximum of 538 m?/s during the period
of analysis. The mean flow during the period was 16.5 m>/s with
a standard deviation of 33.7 m>/s. The Illinois River basin lies in the
southern region of the USA and experiences high temperature, and
evaporation is a dominant hydrological process in this basin, with
average annual potential evaporation of 105 cm. The SWAT setup for
[llinois River watershed had 26 sub basins and 286 HRUs.

6. Results and discussions
6.1. Development of pseudo simulator

As discussed earlier, eight parameters of SWAT were identified
that influence the computation of stream flow by the model, after
Table 2

The performance of ANN as a pseudo simulator for estimating the RMSE statistic of
SWAT simulations in Illinois River Basin from parameters.

Sample Length Training Validation
Efficiency Correlation Efficiency Correlation

100 0.892 0.951 0.798 0.932
200 0.895 0.951 0.882 0.931
300 0.905 0.958 0.886 0.934
400 0.918 0.961 0.898 0.948
500 0.923 0.963 0.901 0.950
100? 0.886 0.948 0.882 0.929
200? 0.901 0.953 0.885 0.931
300° 0.892 0.949 0.883 0.929
400° 0.912 0.958 0.896 0.939
200? 0.897 0.949 0.883 0.935
300? 0.902 0.951 0.885 0.931

2 These are bootstrapped (randomly picked up) samples.
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Fig. 2. Comparison between the ANN estimated error response of SWAT (RMSE) and the actual RMSE produced by SWAT for Illinois River Basin (a) during training of ANN (b) during

validation of ANN.

screening and parameterization (Muleta and Nicklow, 2005). The
sampling of parameters in the entire range of variation was done
using Latin Hypercube Sampling (LHS) technique (Mckay et al.,
1979). Since the parameter probability density function was not
available, a uniform distribution is assumed (Freer et al., 1996;
Manache and Melching, 2008). LHS method generates samples
from the assigned probability distribution of parameters using
a stratified approach. To generate a sample size of N for the vari-
ables § = [61,05,...,0k] from their corresponding probability distri-
butions, the range of each 6, is stratified into N disjoint intervals of
equal probability and one value from each of these strata is
randomly selected without replacement and randomly combined
with second parameter from an interval, this two parameter
combination is combined with value of third parameter and so on
till all the k parameters are sampled. The SWAT model was executed
for each parameter combination, and the error from the model is
computed. The root mean square error (RMSE) of the daily flow
computations was used as index for the sensitivity analysis. During
this exercise 800 sets of parameters and their corresponding error
(RMSE) were computed.

The generated configurations of the parameter vector (800
patterns), and corresponding error responses (RMSE) of the SWAT
model, are fed as inputs and outputs to train the artificial neural
network (ANN). As mentioned earlier, 500 patterns were used for
training and the rest for cross validation and testing. The data was
normalized in the range of 0—1, since it is a general recommended
practice in ANN model development. The trained ANN is then used
instead of the SWAT model as a pseudo simulator. The ANN used
here is the three layer feed forward network, trained using the
standard back propagation algorithm. The transformation function
used in the hidden layer is hyperbolic tangent function and that in
the output layer is sigmoid function, which were fixed after various
trials.

The number of hidden neurons in the network, which is
responsible for capturing the dynamic and complex relationship
between various input and output variables was identified by
various trials (Eberhart and Dobbins, 1990; Maier and Dandy,
2000). The trial and error procedure started with two hidden
neurons initially, and the number of hidden neurons was increased
up to 10 during the trails with a step size of 1 in each trial. For each
set of hidden neurons, the network was trained in batch mode to
minimize the mean square error at the output layer. In order to
check any over-fitting during training, a cross validation (Bishop,
1995) was performed by keeping track of the efficiency (Nash and
Sutcliffe, 1970) of the fitted ANN model. The training was stopped

when there was no significant improvement in the efficiency, and
the model was then tested for its generalization properties. The
parsimonious structure that resulted in minimum error and
maximum efficiency during training as well as testing was selected
for validation. Alternatively one can use the cascade correlation
algorithm for fixing the hidden neurons (Karunanithi et al., 1994). A
total of 500 input—output pairs were used for training the network.
The remaining data sets were used for cross validation (150
patterns) and final testing (150 patterns).

The study investigated the impact of length of samples required
for developing the pseudo simulator, since a good performance of
the ANN has to be ensured before it can be used for simulating the
SWAT model. The details of the analysis in this direction are also
provided in Table 2. The first 5 sets of samples in the Table 2 are
selected in sequence, and the rest are bootstrapped (randomly
sampled) combinations. It is noted that when the training is per-
formed with only 100 data sets from the Monte Carlo simulations,
the ANN model show efficiency (Nash and Sutcliffe, 1970) of 0.798
during validation (see Table 2). It can be seen from Table 2 that even
when the training data length has been increased, the performance
of the ANN does not vary significantly, although a slight improve-
ment is observed. The maximum performance was observed when
all the 500 sets of parameters were used for training (92% efficiency
during calibration and 90% efficiency during validation). Conse-
quently the ANN model that has been trained using 500 patterns
has been employed for further analysis in this study. Although it
cannot be generalized that 500 patterns are sufficient enough to
mimic the SWAT model performance, in this example the perfor-
mance of the ANN model is found to be satisfactory. Nonetheless,
the more the examples for training, the better will be the perfor-
mance of ANN.

Fig. 2 depicts a scatter plot between the ANN simulated RMSE
values and the corresponding SWAT generated RMSE (targeted
values for ANN model) of the pseudo simulator during training
(Fig. 2a) and validation (Fig. 2b) respectively. Note that the RMSE
values presented in this figure corresponds to the normalized
values used in ANN model development. It is to be noted that the
data points do not deviate much from the 1:1 line (solid line in the
plot), which is evident from the high 12 value of 0.96 during training
of ANN and 0.90 during validation. The plot shows a very close
scatter, which indicates that the developed pseudo simulator is able
to mimic the performance of SWAT model fairly well. Nonetheless,
it is worth mentioning that determination of an appropriate
network architecture, and its training, is one of the most important,
but also one of the most difficult, tasks in the ANN model-building
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Table 3
Cross correlation matrix of absolute variance of parameters and RMSE.
CN2 ESCO ALPHA_BF GW_REVAP REVAPMN SMFMX SMFMN SOL_AWC RMSE

CN2 1.0000 —-0.1055 0.1290 0.0169 0.1177 0.0482 0.0013 —0.0575 0.4418
ESCO 1.0000 —0.0475 —0.0809 —0.0287 0.0354 0.0656 0.0673 —0.1948
ALPHA_BF 1.0000 0.2020 0.5610 -0.0199 -0.1621 -0.0163 0.1290
GW_REVAP 1.0000 0.2593 —-0.0071 —0.0694 —0.0404 0.1771
REVAPMN 1.0000 0.1134 —0.0388 —0.0571 0.2053
SMFMX 1.0000 0.1674 —0.0353 0.0590
SMFMN 1.0000 —0.0804 0.0442
SOL_AWC 1.0000 -0.3721

process. Unless carefully designed and trained an ANN model can
lead to over parameterization, resulting in an unnecessarily large
network.

6.2. Sensitivity analysis

The sensitivity analysis is performed by the method of absolute
variance discussed earlier. During this exercise, numerical inte-
gration of the function represented by the developed ANN model
between a pair of parameter combination, by moving along the line
between the pair, is performed for all the 800 sampled parameter
configurations. The identified eight parameters, which are consid-
ered having influence on the stream flow prediction in the SWAT
model, are tested for their sensitivity. Table 3 presents the corre-
lation matrix between the absolute variation of the model output
(RMSE in this case) and the variation in each parameter obtained
during sensitivity analysis. According to the proposed method, the
parameter whose absolute variance has the highest correlation
with the RMSE is considered the most sensitive parameter. It can be
noted that the absolute variance of curve number (CN_f) has high
correlation (0.4418) with the output, and is considered to be the
most sensitive parameter for the model in the Illinois River
watershed. Similarly, the snow melt rates have the least correlation
(0.0442). Thus they can be considered as the least sensitive
parameter of SWAT model in Illinois River watershed, among the
parameters that are considered in this study.

It can be noted from Table 3 that the proposed method of
sensitivity analysis clearly brings out the interaction between the
parameters. For instance, the base flow index, ALPHA_BF, is highly
correlated to the parameters that influence the ground water loss
(to REVAPMN with a correlation of 0.5610 and to GW_REVAP with
a correlation of 0.2020). The parameter ALPHA_BF is also correlated
to the minimum snow melt rate (SMFMN) with a correlation of
—0.1621 indicating that as the snow melt rate increases, the base
flow decreases, which is obvious in any watershed. It is also noted
from Table 3 that the sign of the correlation between parameters
clearly indicate their actual interaction in the watershed. For
example, the soil evaporation compensation factor (ESCO) is
negatively correlated with all the factors that influence the ground

Table 4
Ranking of the parameters of the SWAT model for Illinois watershed identified by
the proposed method.

Parameter of SWAT

CN2
SOL_AWC
REVAPMN
ESCO
GW_REVAP
ALPHA_BF
SMFMX
SMFMN

Rank according to the proposed SA

0N U WN =

water flow process (ALPHA_BF, GW_REVAP, REVAPMN), and is
positively correlated with all those affect the surface flow (SMFMN,
SMFMX, SOL_AWC). The results illustrate that the proposed method
is effective in identifying the interacting parameters in the SWAT
model.

The ranking of the parameters in the order of their sensitivity are
presented in Table 4. In the Illinois River watershed, the parameter
CN_f (curve number factor) is ranked at first according to the
proposed method, followed by SOL_AWC, which accounts for
the available soil water in the HRU (Table 4). As discussed earlier, the
CN_f is the major driving parameter in runoff estimation and
therefore is expected to be highly sensitive in most of the water-
sheds. It may be noted that in the Illinois River watershed the
evaporation losses are higher as it is in the southern parts of United
States where relatively greater values of temperature and radiation
are observed. Consequently, the parameters REVAPMN, ESCO and
GW_REVAP, which directly influence the evapotranspiration losses
from the watershed, are found to be sensitive in Illinois. This is in
agreement with the results reported by Migliaccio and Chaubey
(2008) and Chaubey and Garg (2006), wherein they reported that
ESCO is a sensitive parameter in Illinois River watershed. The snow
melt rates are the least sensitive parameters for the study water-
shed, which is in accordance with the fact that snowfall is small in
the Illinois watershed representing only 3.89% of the total precipi-
tation (44.25 mm of snow fall (water equivalent) compared to
1137.1 mm of precipitation during 1995—2004).

It is worth mentioning that the results from this study is
consistent with the results from Cibin et al. (2010), which used
Sobols’ method for SA in Illinois River watershed. According to
Cibin et al. (2010), the first four of the sensitive parameters of SWAT
model in Illinois basin identified by Sobols’ method include those
found in this study, except that their sensitivity ranking are
different. This variation in ranking can be attributed to the differ-
ence in the methodology employed in both the methods; Sobols’
method is based on the decomposition of variance of output
produced by the model, while the proposed method considers the
absolute variation between the parameters and model output.
Therefore, the method of sensitivity analysis proposed in this study
can be considered as an effective precursor for calibration, where
only the most sensitive parameters of the model need to be esti-
mated. One of the advantages of the proposed method is that it
eliminates a large number of Monte Carlo simulations of the SWAT
model, as compared to Sobols’ method (Cibin et al., 2010) thereby
reducing a lot of computational time. Note that Cibin et al. (2010)
used 28,000 simulations of SWAT, while the current method used
only 800 SWAT simulations.

The foregoing discussions illustrate that the proposed method of
sensitivity analysis is effective in identifying the most sensitive
parameters that influence the stream flow computations in SWAT
model in less time. Nonetheless, it is worth mentioning that the
effectiveness of the method lies on the performance of the pseudo
simulator.
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7. Summary and conclusions

Any hydrologic model is characterized by a large number of
parameters that cannot be measured directly. These parameters
will severely limit the accuracy of simulation by the model and
hence they have to be carefully estimated. However, estimating
a large number of parameters through calibration is a complex and
computationally expensive task. Calibration of such models is
generally preceded by a parameter sensitivity analysis in order to
reduce the dimensionality of calibration parameters. The currently
available techniques for sensitivity analysis generally consider the
linear relationship between the parameter and the measure of
sensitivity or they are computationally intensive. In this study,
a novel nonlinear sensitivity analysis method is proposed that can
be applied to any complex hydrologic model. The method is based
on computing the correlation between the absolute variation of the
function that the model represents and the absolute variation of
each of the parameters within the parameter space. The theoretical
considerations behind the concept and the methodology are pre-
sented in the paper. In order to reduce the computational burden of
the proposed method, ANN is employed as a pseudo simulator to
reproduce the models simulations. The method is demonstrated by
a case study on SWAT model parameters that influence the stream
flow computations in the model. It is noted that the proposed
method is able to rank the parameters of the SWAT model effec-
tively in accordance with the hydrological processes considered.
The ranking of the parameters will help developing an efficient
calibration procedure that uses only the sensitive parameters. It is
worth mentioning that the effectiveness of the method would
depend on the performance of pseudo simulator in reproducing the
error statistic of the actual model.
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